Water in Petroleum Systems
Water in Petroleum Systems

WiPS.consulting GmbH

Contact

Send us an email

info@water-in-petroleum-systems.com

Publications of the WiPS.consulting GmbH team

 

Hydrogeochemical modelling of H2S

  • Hemme, C., and van Berk, W. (2017): Potential risk of H2S generation and release in salt cavern gas storage. Journal of Natural Gas Science and Engineering, 47, 114-123.
  • Fu, Y., van Berk, W., Schulz, H.-M. (2016): H2S formation, fate and behavior in anhydrite-sealed carbonate gas reservoirs: A three dimensional reactive mass transport modeling approach. - AAPG Bulletin, 100, 5, p. 843-865.

 

Hydrogeochemical modelling of CO2

  • Van Berk, W.; Schulz, H.-M.; Fu., Y. (2013): Controls on CO2 fate and behavior in the Gullfaks oilfield (Norway): how hydrogeochemical modeling can help to decipher organic-inorganic interactions. AAPG Bulletin, v. 97, no. 12, p. 2233-2255.
  • Van Berk, W.; Schulz, H.-M.; Fu., Y. (2009): Hydrogeochemical modelling of CO2 equlibria and mass transfer induced by organic-inorganic interactions in siliciclastic petroleum reservoirs. Geofluids, 9, 253-262.

 

(Hydro)Geochemical modelling of Uranium

  • Yang, S., Schulz, H.-M., Horsfield, B. Schovsbo, N. H., Noah, M., Panova, E., Rothe, H. and Hahne, K. (2018):  On the changing petroleum generation properties of Alum Shale over geological time caused by uranium irradiation. Geochimica et Cosmochimica Acta 229, 20-35.
  • van Berk, W., Fu, Y., 2017: Redox Roll-Front Mobilization of Geogenic Uranium by Nitrate Input into Aquifers: Risks for Groundwater Resources. Environmental Science & Technology, 51, 337-345.

 

Organic-Inorganic Interactions

  • Schulz, H.-M., Wirth, R., Schreiber, A. (2016): Nano-Crystal Formation of TiO2 Polymorphs Brookite and Anatase Due To Organic—Inorganic Rock–Fluid Interactions. - Journal of Sedimentary Research, 86, 2, p. 59-72.

  • Mu, N., Schulz, H.-M., Fu, Y., Schovsbo, N. H., Wirth, R., Rhede, D. and van Berk, W. (2015): Berthierine formation in an oil reservoir as result of fluid-rock interactions: Part I. Characterization. Marine and Petroleum Geology 65, 302-316.

  • Fu, Y., van Berk, W., Schulz, H.-M., and Mu, N. (2015a): Berthierine formation in reservoir rocks from the Siri oilfield (Danish North Sea) as result of fluid-rock interactions: Part II. Deciphering organic-inorganic processes by hydrogeochemical modeling. Marine and Petroleum Geology 65, 317-326.

  • Fu, Y., van Berk, W., Schulz, H.-M., and Mu, N. (2015b): Berthierine formation in an oil reservoir as result of fluid-rock interactions: Part III. Determining mineral stability and CO2-sequestering capacity of glauconitic sandstones. Marine and Petroleum Geology 65, 327-333.

 

Hydrogeochemical Modelling of Carbonate Porosity

  • van Berk, W., Y. Fu, and Schulz, H.-M. (2015): Creation of Pre-Oil-Charging Porosity by Migration of Source Rock-Derived Corrosive Fluids through Carbonate Reservoirs: 1D Mass Transport Modeling. Petroleum Geoscience 21, 35-42.
  • Schulz, H.-M., Wirth, R., Schreiber, A. (2016): Organic-inorganic rock-fluid interactions in stylolitic micro-environments of carbonate rocks: A FIB-TEM study combined with a hydrogeochemical modelling approach. - Geofluids, 16, 5, p. 909-924.

 

Hydrogeochemical Modelling of Seawater Injection and Scaling

  • van Berk, W., Y. Fu, and Schulz, H.-M. (2015): Temporal and spatial development of scaling in reservoir aquifers triggered by seawater injection: Three-dimensional reactive mass transport modeling of water–rock–gas interactions. Journal of Petroleum Science and Engineering 135, 206-217.
  • Fu, Y., W. van Berk, and H.-M. Schulz (2013): Temporal and spatial development of scale formation: one-dimensional hydrogeochemical transport modeling, Journal of Petroleum Science & Engineering, 58, 413-427.
  • Fu, Y.; van Berk, W.; Schulz, H.-M. (2013): Modellierung hydrogeochemischer Prozesse bei der Injektion von Meerwasser in Offshore-Öllagerstätten. Hydrogeochemical Modelling of Seawater Injection into Offshore Oil Fields. Erdöl Erdgas Kohle, 129, 1, 23-28.
  • Fu, Y.; van Berk, W.; Schulz, H.-M. (2012): Hydrogeochemical modelling of fluid–rock interactions triggered by seawater injection into oil reservoirs: Case study Miller field (UK North Sea). Applied Geochemistry, 27, 6, 1266-1277.

 

Hydrogeochemical Modelling of Deep Basinal Brines

  • Mu, N., Fu, Y., Schulz, H.-M., van Berk, W. (2016): Authigenic albite formation due to water-rock interactions - Case study: Magnus oilfield (UK, Northern North Sea). - Sedimentary Geology, 331, p. 30-41.

  • Bozau, E., Häußler, S. and van Berk, W. (2015): Hydrogeochemical modelling of corrosion effects and barite scaling indeep geothermal wells of the North German Basin using PHREEQCand PHAST. Geothermics 63, 540-547.

  • Bozau, E., Sattler, C.-D., and van Berk, W. (2015): Hydrogeochemical classification of deep formation waters. Applied Geochemistry 52, 23-30.

 

Modelling Techniques in Hydrogeology

  • Arning, E. T., van Berk, W., Schulz, H.-M. (2016): Fate and behaviour of marine organic matter during burial of anoxic sediments: Testing CH2O as generalized input parameter in reaction transport models. Marine Chemistry 178, 8-21.
  • Bozau, E. & W. van Berk (2012), Geothermal use of deep rock reservoirs (Hot Dry Rock Systems): Is it possible to predict the chemical composition of water? AMS Online, 04, 13-18.
  • Kübeck, C., van Berk W. & A. Bergmann, A. (2009), Modelling raw water quality: development of a drinking water management tool, Water Science & Technology, 59, 117-124.
  • Kübeck, C., Hansen, C., Bergmann, A., Kamphausen, S., König, C., van Berk, W. (2009), Model based raw water quality management – Manganese mobilization induced by bank filtration, Clean, 37, 945-954.
  • van Berk W & C. Hansen. (2006), Hydrogeochemische Stoffflussmodelle, Springer, 226 p. Berlin Hei-delberg New York, ISBN 10 3-540-31280-3
  • Hansen, C. & van Berk, W. (2004), Retracing the development of raw water quality in water works applying reactive controlled material flux analysis, Aquatic Sciences, 66, 60-77.

 

Conventional Petroleum Geology

  • Yang, S., Schulz, H.-M., Schovsbo, N. H., Bojesen-Koefoed, J. (2017): Oil-source rock correlation of the Lower Palaeozoic petroleum system in the Baltic Basin northern Europe). AAPG Bulletin, 101(12), 1971-1993.
  • Aldahik, A., Schulz, H.-M., Horsfield, B., Wilkes, H., Dominik, W., Nederlof, P. (2017): Crude oil families in the Euphrates Graben (Syria). - Marine and Petroleum Geology 86, 325-342.
  • Gratzer, R.; Bechtel, A.; Sachsenhofer, R. F.; Linzer, H.-G.; Reischenbacher, D.; Schulz, H.-M. (2011): Oil–oil and oil-source rock correlations in the Alpine Foreland Basin of Austria: Insights from bi-omarker and stable carbon isotope studies.. Marine and Petroleum Geology, 28, 6, 1171-1186.
  • Sachsenhofer, R. F.; Schulz, H.-M. (2006): Architecture of Lower Oligocene source rocks in the Alpine Foreland Basin: A model for syn- and postdepositional source rock features in the Paratethyan Realm.. Petroleum Geoscience, 12, 4, 363-377.
  • Schulz, H.-M., Sachsenhofer, R.F., Bechtel, A., Polesny, H., Wagner, L. (2002): The origin of hydrocarbon source rocks in the Austrian Mollasse Basin (Eocene-Oligocene transition). Marine and Petroleum Geology, 19(6), 683-709.

 

Unconventional Hydrocarbons

  • Schulz, H.-M., Linol, B., Schuck, B., Schaepan, I., de Wit, M., and Wirth, R. (2018): Early diagenetic signals archived in black shales of the Dwyka and Lower Ecca Groups of the southern Karoo Basin (South Africa): Keys to the deglaciation history of Gondwana during the Early Permian, and its effect on potential shale gas storage. South African Journal of Geology (in press).
  • Chere, N., Linol, B., de Wit, M., and Schulz, H.-M. (2017): Lateral and temporal variations of black shales across the southern Karoo Basin - Implications for shale gas exploration. South African Journal of Geology, 120(4), 541-564.
  • Schulz, H.-M., Chere, N., Geel, C., Booth, P., de Wit, M. J. (2016): Is the Postglacial History of the Baltic Sea an Appropriate Analogue for the Formation of Black Shales in the Lower Ecca Group (Early Permian) of the Karoo Basin, South Africa? - In: Linol, B., de Wit, M. J. (Eds.), Origin and Evolution of the Cape Mountains and Karoo Basin, (Regional Geology Reviews), Cham : Springer International Publishing, p. 111-117.
  • Schulz, H.-M., Biermann, S., van Berk, W., Krüger, M., Straaten, N., Bechtel, A., Wirth, R., Lüders, V., Schovsbo, N. H., and Crabtree, S. (2015): From shale oil to biogenic shale gas: retracing organic-inorganic interactions in the Alum Shale (Furongian-Lower Ordovician) in southern Sweden. AAPG Bulletin 99 (5), 927–956.
  • Kerschke, D. I., and Schulz, H.-M. (2015): Sedimentological and Diagenetic Controls of Gas in Lower and Early Upper Carboniferous Sediments, NE Germany. Sedimentary Geology 325, 192-209.

  • Geel, C., de Wit, M., Booth, P., Schulz, H.-M., and Horsfield, B. (2015): Palaeo-environment, diagenesis and characteristics of Permian black shales in the Lower Karoo Supergroup flanking the Cape Fold Belt near Jansenville, eastern Cape, South Africa: Implications for the shale gas potential of the Karoo Basin. South African Journal of Geology 118(3), 249-274.

  • Tan, J., Horsfield, B., Fink, R., Krooss, B., Schulz, H.-M., et al. (2014): Shale Gas Potential of the Major Marine Shale Formations in the Upper Yangtze Platform, South China, Part III: Mineralogical, Lithofacial, Petrophysical, and Rock Mechanical Properties. Energy & Fuels 28 (4), 2322–2342.
  • Geel, C., Schulz, H.-M., Booth, P., de Wit, M. & Horsfield, B. (2013): Shale gas characteristics of Permian black shales in South Africa: results from recent drilling in the Ecca Group (Eastern Cape). Energy Procedia 40, 256 – 265.

  • Bernard, S.; Horsfield, B.; Schulz, H.-M.; Wirth, R.; Schreiber, A.; Sherwood, N. (2012): Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Marine and Petroleum Geology, 31, 1, 70-89.
  • Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.-M.; Horsfield, B. (2012): Formation of nanoporouspy-robitumen residues during maturation of the Barnett Shale (Fort Worth Basin). Int. Journal of Coal Geology, 103, 3-11.
  • Littke, R.; Krooss, B.; Uffmann, A. K.; Schulz, H.-M.; Horsfield, B. (2011): Unconventional Gas Re-sources in the Palaeozoic of Central Europe. Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, 66, 6, 953-977.
  • Bernard, S.; Horsfield, B.; Schulz, H.-M.; Schreiber, A.; Wirth, R.; Vu, T. T.; Perssen, F.; Könitzer, S.; Volk, H.; Sherwood, N.; Fuentes, D. (2010): Multi-scale detection of organic and inorganic sig-natures provides insights into gas shale properties and evolution.. Chemie der Erde - Geochemistry, 70, Suppl. 3, 119-133.
  • Hartwig, A.; Könitzer, S.; Boucsein, B.; Horsfield, B.; Schulz, H.-M. (2010): Applying classical shale gas evaluation concepts to Germany—Part II: Carboniferous in Northeast Germany..Chemie der Erde - Geochemistry, 70, Suppl. 3, 93-106.
  • Hartwig, A.; Schulz, H.-M. (2010): Applying classical shale gas evaluation concepts to Germany—Part I: The basin and slope deposits of the Stassfurt Carbonate (Ca2, Zechstein, Upper Permian) in Brandenburg..Chemie der Erde - Geochemistry, 70, Suppl. 3, 77-91.
  • Horsfield, B.; Schulz, H.-M.; Aplin, A. C.; Doornenbal, H.; Moretti, I.; Lorant, F.; Maio, F.; Thomas, R. (2010): Shale gas research: the way forward for Europe. Oilfield Technology, 3, 2, 14-18.
  • Schulz, H.-M.; Horsfield, B. (2009): Shale Gas in Europa: Eine neue unkonventionelle Gasressource wie in Nordamerika?. ErdölErdgasKohle, 125, 2, 50-55.

 

Biogenic Methane

  • Arning, E. T., Häußler, S., van Berk, W., Schulz, H.-M. (2016): PEaCH4 v.2.0: A modelling platform to predict early diagenetic processes in marine sediments with A focus on biogenic methane– case study: Offshore Namibia. Computers and Geosciences 92, 38-48.
  • Arning, E. T., Gaucher, E., van Berk, W., and Schulz, H.-M. (2015): Hydrogeochemical models locating sulfate-methane transition zone in marine sediments overlying black shales: a new tool to locate biogenic methane? Marine and Petroleum Geology 59, 563-574.
  • Arning, E. T.; van Berk, W.; Vaz dos Santos Neto, E.; Naumann, R.; Schulz, H.-M. (2013): The quantification of methane formation in Amazon Fan sediments (ODP Leg 155, Site 938) by hydrogeochemical modeling solid – Aqueous solution – Gas interactions. Journal of South American Earth Sciences, 42, 205-215.
  • Arning, E. T.; van Berk, W.; Schulz, H.-M. (2012): Quantitative geochemical modelling along a transect off Peru: Carbon cycling in time and space, and the triggering factors for carbon loss and storage. Global Biochemical Cycles, 26, 4.
  • Arning, E. T.; Fu, Y.; van Berk, W.; Schulz, H.-M. (2011): Organic carbon remineralisation and complex, early diagenetic solid–aqueous solution–gas interactions: Case study ODP Leg 204, Site 1246 (Hydrate Ridge). Marine Chemistry, 126, 1-4, 120-131.
  • Schulz, H.-M.; van Berk, W. (2009): Bacterial methane in the Atzbach-Schwanenstadt gas field (upper Austrian Molasse Basin), Part I: Geology. Marine and Petroleum Geology, 26, 7, 1163-1179.
  • Schulz, H.-M.; van Berk, W. (2009): Bacterial methane in the Atzbach-Schwanenstadt gas field (upper Austrian Molasse Basin), Part II: Retracing gas generation and filling history by mass balancing of organic carbon conversion applying hydrogeochemical modelling. Marine and Petroleum Geology, 26, 7, 1180-1189.

 

Modelling techniques in Space Science

  • van Berk, W., J.-M. Ilger, Y. Fu, and C. Hansen (2010), Decreasing CO2 partial pressure trig-gered Mg-Fe-Ca carbonate formation in ancient Martian crust preserved in the ALH84001 Meteorite: Geofluids 11(1), 6–17.
  • van Berk, W. and Fu, Y., (2011), Reproducing hydrogeochemical conditions triggering the formation of carbonate and phyllosilicate alteration mineral assemblages on Mars (Nili Fossae region): Journal of Geophysical Research. 6 pages, 12 figures, 2 tables.
  • van Berk, W., Fu, Y. and J.-M. Ilger, (2012), Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars: Journal of Geophysical Research. pp. E10008-E10008-14